34 research outputs found

    Variants of the low oxygen sensors EGLN1 and HIF-1AN associated with acute mountain sickness.

    Get PDF
    Two low oxygen sensors, Egl nine homolog 1 (EGLN1) and hypoxia-inducible factor 1-α inhibitor (HIF-1AN), play pivotal roles in the regulation of HIF-1α, and high altitude adaption may be involved in the pathology of acute mountain sickness (AMS). Here, we aimed to analyze single nucleotide polymorphisms (SNPs) in the untranslated regions of the EGLN1 and HIF-1AN genes and SNPs chosen from a genome-wide adaptation study of the Han Chinese population. To assess the association between EGLN1 and HIF-1AN SNPs and AMS in a Han Chinese population, a case-control study was performed including 190 patients and 190 controls. In total, thirteen SNPs were genotyped using the MassARRAY® MALDI-TOF system. Multiple genetic models were tested; The Akaike's information criterion (AIC) and Bayesian information criterion (BIC) values indicated that the dominant model may serve as the best-fit model for rs12406290 and rs2153364 of significant difference. However, these data were not significant after Bonferroni correction. No significant association was noted between AMS and rs12757362, rs1339894, rs1361384, rs2009873, rs2739513 or rs2486729 before and after Bonferroni correction. Further haplotype analyses indicated the presence of two blocks in EGLN1; one block consists of rs12406290-rs2153364, located upstream of the EGLN1 gene. Carriers of the "GG" haplotype of rs12406290-rs2153364 exhibited an increased risk of AMS after adjustments for age and smoking status. However, no significant association was observed among HIF-1AN 3'-untranslated region (3'-UTR) polymorphisms, haplotype and AMS. Our study indicates that variants in the EGLN1 5'-UTR influence the susceptibility to AMS in a Han Chinese population

    EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions [Technical Report]

    Full text link
    We introduce EQUI-VOCAL: a new system that automatically synthesizes queries over videos from limited user interactions. The user only provides a handful of positive and negative examples of what they are looking for. EQUI-VOCAL utilizes these initial examples and additional ones collected through active learning to efficiently synthesize complex user queries. Our approach enables users to find events without database expertise, with limited labeling effort, and without declarative specifications or sketches. Core to EQUI-VOCAL's design is the use of spatio-temporal scene graphs in its data model and query language and a novel query synthesis approach that works on large and noisy video data. Our system outperforms two baseline systems -- in terms of F1 score, synthesis time, and robustness to noise -- and can flexibly synthesize complex queries that the baselines do not support.Comment: This is an extended technical report for the following paper: "Enhao Zhang, Maureen Daum, Dong He, Brandon Haynes, Ranjay Krishna, and Magdalena Balazinska. EQUI-VOCAL: Synthesizing Queries for Compositional Video Events from Limited User Interactions. PVLDB, 16(11): 2714-2727, 2023. doi:10.14778/3611479.3611482

    VOCALExplore: Pay-as-You-Go Video Data Exploration and Model Building [Technical Report]

    Full text link
    We introduce VOCALExplore, a system designed to support users in building domain-specific models over video datasets. VOCALExplore supports interactive labeling sessions and trains models using user-supplied labels. VOCALExplore maximizes model quality by automatically deciding how to select samples based on observed skew in the collected labels. It also selects the optimal video representations to use when training models by casting feature selection as a rising bandit problem. Finally, VOCALExplore implements optimizations to achieve low latency without sacrificing model performance. We demonstrate that VOCALExplore achieves close to the best possible model quality given candidate acquisition functions and feature extractors, and it does so with low visible latency (~1 second per iteration) and no expensive preprocessing

    Variation of the Jovian Magnetopause Under Constant Solar Wind Conditions: Significance of Magnetodisc Dynamics

    Get PDF
    It is generally believed that variations in the upstream solar wind (SW) and interplanetary magnetic field (IMF) conditions are the main cause of changes of Jupiter's magnetopause (JM) location. However, most previous pressure balance models for the JM are axisymmetric and do not consider internal drivers, for example, the dynamics of the magnetodisc. We use three-dimensional global magnetosphere simulations to investigate the variation of the JM under constant SW/IMF conditions. These simulations show that even without variations in the upstream driving conditions, the JM can exhibit dynamic variations, suggesting a range as large as 50 Jupiter radii in the subsolar location. Our study shows that the interchange structures in the Jovian magnetodisc will introduce significant radial dynamic pressure, which can drive significant variation in the JM location. The results provide important new context for interpreting the JM location and dynamics, with key implications for other internally mass-loaded and/or rapidly rotating systems

    Rapid biotic rebound during the late Griesbachian indicates heterogeneous recovery patterns after the Permian-Triassic mass extinction

    Get PDF
    New fossil data from two Early Triassic (Griesbachian to Dienerian) sections from South China show unusually high levels of both benthic and nektonic taxonomic richness occurring in the late Griesbachian. In total, 68 species (including 26 newly originated species) representing mollusks, brachiopods, foraminifers, conodonts, ostracods, and echinoderms occur in the late Griesbachian, indicating well-established and relatively complex marine communities. Furthermore, the nekton shows higher origination rates than the benthos. Analyses of the sedimentary facies and size distribution of pyrite framboids show that this high-diversity interval is associated with well-oxygenated environments. In contrast to the previously suggested scenario, which inferred that persistently harsh environmental conditions impeded the biotic recovery during the Early Triassic, our new findings, combined with recent work, indicate a fitful regional recovery pattern after the Permian-Triassic crisis, resulting in three main diversity highs: late Griesbachian–early Dienerian, early–middle Smithian, and Spathian. The transient rebound episodes were therefore influenced by both extrinsic local (e.g., redox condition, temperature) and intrinsic (e.g., biological tolerances, origination rates) parameters
    corecore